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The main methods of analysis of heat transfer in mixtures of nonre- 
acting gases are discussed. A new model and method of calculating 
the thermal conductivity is proposed. 

T h e r e  have  b e e n  c o n s i d e r a b l e  n u m b e r  of t h e o r e t i c a l  
s tud i e s  of hea t  t r a n s f e r  in m i x t u r e s  of n o n r e a c t t n g  
g a s e s .  Mos t  of t h e m  r e p r e s e n t  a con t inua t ion  and d e -  
v e l o p m e n t  of B o l t z m a n n ' s  f undamen ta l  w o r k  [1]. A 
gas  o r  a gas m i x t u r e  is a d i s c r e t e  m e d i u m  wi th  loca l  
a g g r e g a t e s  of m a s s  in the f o r m  of a t o m s ,  m o l e c u l e s ,  
o r  a s s o c i a t i o n s  of t hem,  m o v i n g  r a n d o m l y  in space .  
Us ing  the ideas  of m o l e c u l a r  k ine t i c  t heo ry ,  B o l t z -  
m a n n  d e r i v e d  the ba s i c  i n t e g r o d i f f e r e n t i a l  equa t ion  of 
the gas  s t a t e ,  whose  so lu t ion  m a k e s  it  p o s s i b l e  to e x -  
p r e s s  ana ly t i c a l l y  the t r a n s p o r t  c o e f f i c i e n t s ,  inc lud-  
ing the  t h e r m a l  conduc t iv i ty ,  as  a func t ion  of the  c o n -  
t r o l l i n g  p a r a m e t e r s  ( a t omic  o r  m o l e c u l a r  we igh ts  and 
g e o m e t r i c  d i m e n s i o n s  of the  c o m p o n e n t s ,  r a d i a l  d i s -  
t r i bu t ion  funct ion,  d i s t r i b u t i o n  of m o l e c u l a r  v e l o c i t i e s ,  
f o r m  and p a r a m e t e r s  of i n t e r m o l e c u l a r  i n t e r a c t i o n  
po ten t i a l ) .  The  d i f f icu l ty  of so lv ing  the equa t ion  is 
i n c r e a s e d  by the  fac t  tha t  the  g e o m e t r i c  p a r a m e t e r s  of 
gas  m o l e c u l e s  and the n a t u r e  of t h e i r  i n t e r a c t i o n  have  
not ye t  been  adequa t e ly  i n v e s t i g a t e d .  S t r i c t l y  speak ing ,  
the i n t e g r o d i f f e r e n t i a l  equa t ion  of  the gas  s t a t e  app l ies  
to a u n i f o r m  gas in cond i t ions  c l o s e  to the e q u i l i b r i u m  
s ta t e ,  i . e . ,  when the  f luxes  a r e  l i n e a r  in r e l a t i o n  to 
the po ten t i a l  g r a d i e n t s .  

S ince  the end of l a s t  c e n t u r y  t h e r e  have  b e e n  two 
d i f f e r e n t  a p p r o a c h e s  to the a n a l y t i c a l  d e t e r m i n a t i o n  of  
the t h e r m a l  conduc t iv i ty  of  a gas  m i x t u r e .  

1. Enskog  [2] and Chapman  [3] independen t ly  ob-  
t a ined  an a p p r o x i m a t e  a n a l y t i c a l  so lu t ion  of the  B o l t z -  
m a n n  equat ion .  

If the  gas  m i x t u r e  is r e p r e s e n t e d  as  a hypo the t i ca l  
u n i f o r m  gas wi th  r e d u c e d  m o l e c u l a r  p a r a m e t e r s  the 
so lu t ion  of the  equa t ion  of the  gas  s t a t e  f r o m  [2, 3] can  
be u s e d  to obta in  an  e x p r e s s i o n  fo r  the t h e r m a l  con-  
duc t iv i ty  of a gas  m i x t u r e  as  a funct ion  of the fo l lowing  
c o n t r o l l i n g  p a r a m e t e r s  

~, = f~(Mi, at, ei, T, rni). (1) 

We note  that  the  r e d u c e d  m o l e c u l a r  p a r a m e t e r s  
(mass  and d i a m e t e r  of m o l e c u l e s ,  p a r a m e t e r s  of in -  
t e r m o l e c u l a r  in te rac t ion)  of a u n i f o r m  gas a r e  c a l c u -  
l a t ed  on the bas i s  of the c o m b i n a t i o n  r u l e s ,  which  con-  
ta in  s o m e  e l e m e n t s  of a r b i t r a r i n e s s  [4]. 

In the  so lu t ion  of the  B o l t z m a n n  equa t i on  the  m o l -  
e c u l e s  a r e  a s s u m e d  to  be  s p h e r i c a l l y  s y m m e t r i c a l ,  
i dea l ly  e l a s t i c ,  and smoo th ,  wi th  a Maxwe l l t an  v e -  
loc i ty  d i s t r i b u t i o n  [2, 3]. 

The  E n s k o g - C h a p m a n  me thod  was  deve loped  in 
m a n y  subsequen t  s tud ie s  i nvo lv ing  m o r e  p r e c i s e  c o n -  
s i d e r a t i o n  of the  e f fec t  of the a s y m m e t r y  of shape  and 
r o u g h n e s s  of the  m o l e c u l e s ,  the  in t roduc t ion  of new 
kinds of i n t e r a c t i o n  p o t e n t i a l s ,  and a new d i s t r i bu t ion  
funct ion.  A thorough  c r i t i c a l  r e v i e w  of t h e s e  i n v e s t i -  
ga t ions  is  g iven  in [4]. The  d e v e l o p m e n t  of  t r a n s p o r t  
t h e o r y  fo r  m u l t i c o m p o n e n t  m i x t u r e s  is a l s o  d e s c r i b e d  
in [4]. 

2. The  s e c o n d  m e t h o d  of  i n v e s t i g a t i n g  the e f f ec t i ve  
t h e r m a l  conduc t iv i ty  of gas  m i x t u r e s  owes i ts  o r i g i n  
to w o r k  of  W a s s i l j e w a  [5]. Le t  us r e c a l l  the m a i n  idea  
of th is  me thod .  It is a s s u m e d  that  the  e f f e c t i v e  t h e r -  
m a l  conduc t iv i ty  of a gas  m i x t u r e  is  an add i t ive  func -  
t ion  of the  t h e r m a l  conduc t iv i t y  of i ts  c o m p o n e n t s .  
The  t h e r m a l  conduc t iv i ty  of a componen t  in a m i x t u r e  
can d i f f e r  f r o m  the  t h e r m a l  conduc t i v i t y  of the p u r e  
gas ,  s i n c e  the  m e a n  f r e e  path of the m o l e c u l e s  in the 
m i x t u r e  m a y  be s i gn i f i c an t l y  a l t e r e d .  In this  me thod  
of i nves t i ga t i on  the e f f e c t i v e  t h e r m a l  conduc t iv i ty  of 
a gas  m i x t u r e  is e x p r e s s e d  as  a funct ion  of the  fo l -  
lowing p a r a m e t e r s :  

% = f, (M l, a i, T, ~ ,  rni). (2) 

In a l l  the subsequen t  p a p e r s  [6-11]  in which  W a s -  
s i l j e w a ' s  m e t h o d  was deve loped ,  i t  was s t i l l  a s s u m e d  
that  t h e r e  was an add i t ive  r e l a t i o n s h i p  b e t w e e n  the e f -  
f e c t i v e  t h e r m a l  conduc t iv i ty  of  a gas m i x t u r e  and the  
t h e r m a l  conduc t i v i t y  of its c o m p o n e n t s .  S ince  t h e r e  is 
no obvious  b a s i s  for  this  a s s u m p t i o n ,  l e t  us e x a m i n e  
the j u s t i f i c a t i o n  g iven  by W a s s i l j e w a  [5]. 

The t h e r m a l  conduc t iv i ty  of a pu re  gas is d e t e r -  
m i n e d  f r o m  the f o r m u l a  ob ta ined  by B o l t z m a n n  [1]: 

Cp$ 
~ * = z R p * c ~ , l * M - f - '  ( ~ l * - - l ) - l ' ~ ? i  - -  ~ (3) 

F o r  e x t e n s i o n  to a gas  m i x t u r e  W a s s i l j e w a  puts 
f o r w a r d  the fo l lowing  a r g u m e n t s :  "We can imag ine  
the to ta l  n u m b e r  n of m o l e c u l e s  of a pu re  gas d iv ided  
into two p a r t s  n 1 and n2; n 1 + n 2 = n. Then  the t h e r m a l  
conduc t iv i ty  (?)* can  be r e p r e s e n t e d  as c o n s i s t i n g  of 
two pa r t s  in the f o r m  

n~ :~ R p~c~ l i + n~ n R p~-c~, l~ . (4) 
~'t-- nl-bn~ ( y i - - 1 ) M i  n ! - ~ n 2 ( y ~ - - l ) M i  

All  the quan t i t i e s  h e r e  have  the  s a m e  va lues  as in f o r -  
m u l a  (3) and r e l a t e  to one gas .  We l e a v e  the t e m p e r a -  

*The  q u e s t i o n  m a r k  h e r e  and l a t e r  is ou r s .  
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t u r e  and the p r e s s u r e  u n a l t e r e d  and imag ine  n 2 m o l -  
e c u l e s  of the one gas  a r e  r e p l a c e d  by the s a m e  n u m b e r  
of m o l e c u l e s  of the  o t h e r  gas .  Then  e x p r e s s i o n  (4) r e -  
ta ins  (?)  the s a m e  f o r m ,  but  in the s e c o n d  t e r m  of the 
r i g h t - h a n d  s ide  the s u b s c r i p t s  of the c o m p o n e n t s  a r e  
changed .  If the change  in the  m e a n  f r e e  path of the 
m o l e c u l e s  in the m i x t u r e  is taken  into accoun t  the e x -  
p r e s s i o n  for  the  t h e r m a l  conduc t iv i ty  of a b i n a r y  gas  
m i x t u r e  t akes  the f o r m  

n~+ns (y i - -1)M~ + nl+ns ( y j - - 1 ) M j  ' ( 5 )  

? 
w h e r e  l i and l '  a r e  the  new m e a n  f r e e  pa ths  of the m o l -  

J tt 
e c u l e s  of the m i x t u r e  c o m p o n e n t s .  

T 
W a s s i l j e w a  d e t e r m i n e d  the v a l u e s  l i and lj f r o m  the  

f o r m u l a s  [1] 

1; = a~ -1 [ (J~lT, j ]/ '2-j- (~21~ i V (A/~i @ M j ~ I  J -I  , 

= 0 , 5 ( ~ i  + ~j). (6)  

W a s s i l j e w a  s u b s e q u e n t l y  c o n v e r t e d  r e l a t i o n s h i p  (5) 
to the  f o r m  

 1!1+A1  ~176 -1 ( ) +)~2 1+A21 ml -1 = ~ . (7)  
iT/1 /7/2 

H e r e  m l  and m 2 a r e  the v o l u m e  c o n c e n t r a t i o n s  of the 
componen t s  in the m i x t u r e ,  

m~ - n~ (n~ + n~)-L m~ = n~ (n~ + n~) -~, 

and the  p a r a m e t e r  A has the  fo l lowing  fo rm:  

Aij = K 2Mj ' (8) 

w h e r e  k = 1.38 is an e m p i r i c a l  coe f f i c i en t .  
R e l a t i o n s h i p  (7) is known in the  l i t e r a t u r e  as W a s -  

s i l j e w a ' s  f o r m u l a .  
F o r  c o n v e n i e n c e  of f u r t h e r  a n a l y s i s  we put e x p r e s -  

s ion  (7) in the f o r m  

= ~; m~ + x;  ms, (9)  

w h e r e  3.' t and X~--the new v a l u e s  of the t h e r m a l  con-  
duc t iv i ty  of the p u r e  componen t s  in the m i x t u r e - - a r e  
g iven  by the e x p r e s s i o n s  

ml@msA1~' k~= - .  (i0) ms + rniAsl 

We wi l l  show that the above just i f icat ion of the ad- 
dit ive nature of relat ionship (9) is not sound, In fact, 
it is easy to show that by using the same arguments 
we could just i fy the fol lowing form, for instance, of 
the relat ionship between the effective thermal con- 
ductivity and thermal conductivity of the components: 

l m i m 2 
; + 7 .  (11) 

k ~,1 ks 

We note that relationships (4), (5), and (9) assume 

a definite structure in the arrangement of the com- 

ponents in the gas mixture, viz., components 1 and 

2 form flat layers (Fig. la) oriented parallel to the 

heat fluxo The nature of formulas (4) and (5) will be 

the same for two layers consisting of components 1 

and 2 and for an infinite number of infinitely thin lay- 

ers. 
If components 1 and 2 form alternating flat layers 

oriented perpendicular to the heat flux, then we ar- 

rive at formula (ii). 

We emphasize that neither of these cases truly re- 

presents the actual arrangement of the components in 

the gas mixture. In fact, the molecules are arranged 

randomly in the gas mixture. The ascription of a def- 

inite structure to the arrangement of the components 

must be regarded as a formal approach, which, as the 

investigations of Wassiljewa and his successors have 

shown, can be of great value for calculation of the 

thermal conductivity of a gas mixture. Relationships 

(9) and (ii) relate to two extreme models of the struc- 

ture of a mixture and represent cases of minimum (9) 

and maximum (ii) thermal resistance. Such models of 

a gas mixture are anisotropic and the components of 

the mixture in the model are geometrically nonequi- 

valent. Any intermediate isotropic model will pre- 
sumably be closer to the structure of a real gas mix- 
ture. On this basis we can predict straight away that 
relationships (9) and (11) can lead to differences be- 
tween calculated data and experimental results. Re- 
lationship (9) will lead to overestimated results and 
(11) to underestimates. 

This probably explains why Wassiljewa had to in- 
troduce the empirical correction factor K = 1.38 into 
formula (9). 

Wassiljewa's basic assumption of an additive rela- 
tionship between the effective thermal conductivity of 
a gas mixture and the thermal conductivity of its com- 
ponents has been treated very critically by some in- 
vestigators. 

Enskog thinks that in general the thermal conduc- 
tivity of a mixture cannot be expressed by an additive 
function of its components [2]. 

Papers [6-11] give various empirical relationships 
for calculation of the numerical coefficients in Was- 
siljewa's formula. These relationships use experi- 
mental data for the diffusion or viscosity coefficients 
of the components forming the mixture. Attempts to 

provide a rigorous theoretical basis for the use of 
these coefficients have been unsuccessful. The view 
that the thermal conductivity of the mixture will have 
an intermediate value between the results obtained 
from formulas (9) and (11) has been expressed by sev- 
eral investigators. For instance, Brokaw [8] proposed 

F ig .  1. Mode l s  of s t r u c t u r e  of  gas  m i x t u r e :  a) W a s s i l -  
j e w a ' s  mode l  [5]; b) B r o k a w ' s  m o d e l  [8]; c) M i s s e n a r d ' s  

mode l  [12]. 
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that the thermal conductivity of a mixture should be 

calculated as the arithmetic mean of the results ob- 
tained from formulas (9) and (Ii). Missenard [12] pro- 
posed the following model of a gas mixture. Isolated 

inclusions of component 2 are scattered throughout the 

connecting component 1 (Fig. le). The relationship 
between the effective thermal conductivity of such a 
model and the thermal conductivity of the components 

and their volume concentration has the form 

[,_m~,~ (,_. a)] -~ (12) 
', ~,~ , J ," 

In this model components i and 2 are also geomet- 
rically nonequivalent, i.e., the subscripts cannot be 

interchanged in formula (12). To remove this contra- 

diction Missenard suggested calculating two values of 

the thermal conductivity of the mixture by interchang- 
ing the subscripts of the components in (12) and taking 

their arithmetic means. 

The calculation methods proposed by Brokaw and 

Missenard seem very artificial to us. We think that 
the structural model chosen for the gas mixture should 

correspond with the main aspect of the distribution of 
the components in the gas mixture, viz., the compo- 
nents in the mixture do not form alternating layers 

(Wassiljewa's and Brokaw's model) do not consist of 

closed macroinclusions of one component in the other 
(Missenard's model), but form a random system com- 
posed of interpenetrating components. The two com- 
ponents in this case will be geometrically equivalent. 

Let us attempt to construct a structural model of the 
gas mixture corresponding to the formulated require- 
ments. Imagine the position of the molecules of the 
binary gas mixture as fixed at an arbitrary instant 
(see Fig. 2a). We now divide the whole volume oc- 
cupied by the gas mixture between the individual com- 

ponents (see Fig. 2b) in proportion to their volume 

concentration. We obtain a random three-dimensional 
spatial lattice rather like a sponge with communicating 
pores. Each random spatial lattice, as Fig. 2b shows, 
contains molecules of only one component, and the 

o 0 0oO 
0 o ~  0 ~ 

0 0 0,00 0 

o~ ~ o 
o U O o O ~  OoOoOo Ooo  
o 8~176 oo U 

0~0 O0 0 0 
0 o 0 0 

0 0 0 0 0 0 

~,6"rO,~ o : 
"k . . . (  ~ , " ~  I " . ~ r ~ ' ~ k - . ,  I _ 

.o, , ~  , 0 ~  9 c 

o; ~ ,- ,,�9 o~ 

F~Q ~ ; d ~ J  IL; 
"A (~,~(%, ~/O'p ~', 

,"~o ~'�9 ~176 
b 

Fig. 2. For derivation of a model of a gas mixture in the form of inter- 
penetrating components: a) schematic representation of binary gas mix- 
ture; b) distribution of free volume between components; c) schematic 
representation of irregular three-dimensional structure; d) ordered model 

of three-dimensional structure of mixture [13]. 
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volumes occupied by the di f ferent  components  a re  con- 
tiguous with one another .  F igure  2b also shows that  
the c ross  sect ions  of the mic ro l a t t i e e  a re  com m en-  
surable  with the dis tance between the molecu les .  

Assume  that par t  of the volume ass igned  to each 
component is f i l led  with a continuous i so t ropic  m e -  
dium with a t he rma l  conductivi ty cor responding  to the 
a l t e red  the rma l  conductivi ty of the components in the 
mix ture  (see Fig.  2c). The the rmal  conductivi ty of 
such a random th ree -d imens iona l  s t ruc tu re  can be 
invest igated on an o rde red  model .  

In [13] we cons idered  a model  s t ruc tu re  of a two- 
component mix tu re  (see Fig. 2d) cor responding  to 
the r equ i r emen t s  formula ted  e a r l i e r  for the model  of 
a gas mix ture .  In fact ,  the model  of [13] is an o rde red  
sys tem of in te rpenet ra t ing  la t t ices .  It is i so t ropic  and 
the components in it a re  geome t r i ca l l y  equivalent  and 
uni formly  dis t r ibuted throughout the volume of the 
mixture .  The functional re la t ionship  for calcula t ion 
of the the rmal  conductivity has the fo rm 

[ 2 , c ( , : c )  ] 
~ = x ;  c ~ + , ( 1 - - c ) ' +  $ c  + (1-- c)] ' 

. - (13) 

Here C = A / L  is a d imens ion less  quantity c h a r a c t e r -  
izing the re la t ionship  between the p a r a m e t e r s  of the 
spat ial  la t t ice  of the model  (see Fig.  2d). The quantity 
C depends only on the volume concentra t ion of the 
components and is given by the equation 

m2 = 2C ~ -  3C ~ + 1, (14) 

whose real  and positive solution (first  root) has the 
form 

C = 0,5 + a c o s - - ,  (15) 
3 

and for  

0-(m2.: -/0,5,,: a =  - -  1 

0,5 ...~m2S.. 1,0, a =  1 

= arccos (1 - -  2m2); 

r = arccos (2rn~ - -  1), 

and the values of the angle ~ are real only in the last 
quadrant, i.e., 270 ~ _< ~0 _< 360 ~ 

The third root of the cubic equation (14) is also a 

real positive solution, but is less suitable for calcu- 
lations. 

For rough calculations we can use the graphic so- 
lution of Eq. (14) given in Fig. 3. 

We obtain the thermal conductivities k} and k~ of 
the components of the mixture from relationship (ii) 

~ = ~,,(m~ + rn2A~2)-', ~,~ = )~(ra2 + rnlA~m)-' . (16) 

To ca lcula te  coeff icients  A]2 and A~s we use  the 
very  s imple  re la t ionships  proposed in [6]: 

A~e , 1 , (  O. )2 ]/Mll-~ M2 
= - ~ J  ~ v 2~; ' 

A'2,= Y~ ( a )2 r M* + M~ 
~ 2M, ' 

71 = 1 + $I $2 + -~-, v~=,+-~-, ~i~=I+ �9 (17) 

Here S 1 and S2--the Sutherland c o n s t a n t s - - c h a r a c t e r i z e  
the fo rces  of t n t e rmolecu la r  interact ion.  The value of 
$12 for a mix ture  of nonpolar gases  is de te rmined  f rom 
the express ion  [14] $12 = ~FSsS 2, and for mix tu res  with 

polar  components [6] Ss2 = 0.73 ~FS1S 2. The coeff ic ients  
A[j can also be ca lcula ted  f rom other r ecen t ly  obtained, 
more  accura te  re la t ionships  [7 -11 ,  15, 16]. 

Thus, we can propose the following scheme for ca l -  
culation of the t he rma l  conductivity of a gas mix ture .  
F r o m  (15), (16) we find the the rmal  conductivity of the 
components of the mix ture ,  i . e . ,  

x;= f~(~l, ~, ml, m~, ~1, %&,&, M1, Ms). (IS) 

The found values of l~, l~ and the volume concen-  
t ra t ions  m s and m 2 a re  subst i tuted in re la t ionship  (13) 
and the ef fec t ive  t he rm a l  conductivi ty of the gas mix -  
ture  

X = [4()~;, )~, rnl, rn2) (19) 

is calculated.  
Let us invest igate  the effect  of individual p a r a m -  

e te r s  on the effect ive  t he rma l  conductivity of the gas 
mix ture  ca lcula ted  by the proposed method. 

A genera l  quant i ta t ive analys is  of (13) is r a t h e r  
difficult ,  s ince the ef fec t ive  t he rma l  conductivi ty of 
the mix ture  is a function of ten p a r a m e t e r s  and, hence,  
in this paper  we confine ou r se lves  to a few l imi t ing 
cases and an investigation of the qualitative effect of 
the individual parameters .  

1. We consider several  limiting cases in formula 
(13), which lead to obvious results: a) X~ = k~, then 
v= l a n d A = X '  s=x~;b)  whenm 2 = 0, k = k ~ = k s ; c )  
when m s = 0, k = X~ = X2; d) when A~2 = A~s = 1 we ob- 

tain X} = Xs, :~2 = X2. 
2. We note that in the region 0.7 _< v -< 1.6 the r e -  

lationship X =f4(X], X~, m s, m 2) is almost l inear.  
3. Consideration of the effect of polarity of the 

components when v ~ 1 leads to a reduction of the co- 
efficient A~j and the appearance of a positive deviation 
of the effective thermal conductivity from the addi- 
tivity rule. 

4. If there is a significant difference in the masses  
of the molecules and their  diameters we can expect the 
appearance of negative deviations of the effective ther -  
mal conductivi ty of a gas mix ture  f rom the addit ivi ty 
rule .  

C =\ 
a6 

0.0 

a2 

\ 
\ 

a 0,2 ao 0.6 0.8 ms 

Fig. 3. Relationship between parameter  C 
and volume concentration of components. 
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To test the suitability of the proposed method we 
calculated the thermal conductivity of 30 mixtures of 
inert, polyatomic, and polar gases in the whole range 
of variation of the concentration of the components at 
t e m p e r a t u r e s  of 273 to 800 ~ K. The mean di f ference  
between calcula t ion and exper iment  was 2 - 5 % .  The 
max imum dif ference  for  mix tures  of ine r t  gases  (about 
10%) occu r r ed  in the case  of a H e - K r  mix ture  at T = 
793 ~ K in the reg ion  of low concentra t ions  of the heavy 
component.  

For  mix tu res  of polyatomic gases  the max imum 
deviation (up to 14%) was observed  for a H2-CO 2 mix -  
ture ,  a lso  in the region of low volume concentra t ion 
of CO 2. Considerable  deviat ions between expe r imen t  
and calcula t ion (up to 10%) for H2-CO 2, H2-N 2, and 
H2-C2H 4 mix tu res  have been observed  by other  r e -  
s e a r c h e r s  [8,20] and probably r equ i r e  specia l  con-  
s idera t ion .  

It is be l ieved  that p resen t  analyt ical  methods of 
ca lcula t ion of the the rmal  conductivi ty of gas mix tu res  
give resu l t s  which deviate f rom the exper imenta l  data 
by only 2-3% on the average .  In view of this an a v e r -  
age d i sc repancy  of 5-8% can be r ega rded  as a fault  of 
the calcula t ion method. 

We r e g a r d  this viewpoint as s t range ,  s ince  the e r -  
r o r  in the exper imenta l  de te rmina t ion  of the the rmal  
conductivity of pure components  and the d i f fe rences  
between the data of different  authors a re  :L(2-5%) [17] 
and inc rease  with t e m p e r a t u r e  inc rease .  In addition, 
the initial calculat ion p a r a m e t e r s  a i, e i, and S i differ 
s ignif icantly in different  paPers  [4, 16, 18, 19]. At the 
same t ime,  calculat ions show that for a He-Xe mix -  
ture  a change of 10% in a i leads to a change of 25% in 
the the rmal  conductivi ty of the gas mix ture .  This in- 
dicates  the need for a c r i t i ca l  atti tude to the preva len t  
view on the postulated e r r o r  of var ious  methods of 
calculat ion.  The cons ide red  quest ions and a co m pa r -  
ison of the resu l t s  of ca lcula t ions  by the proposed  
method with exper imenta l  data will  be dealt  with in a 
specia l  paper .  

NOTATION 

X is the ef fec t ive  t he rma l  conductivi ty of gas mix-  
ture;  k i is the t he rma l  conductivi ty of pure i - th  com-  
ponent; a i and M i a re  the d i ame te r  and the mass  of 
mo lecu l a r  components;  e i  and S i a re  the constants  
cha rac t e r i z ing  in t e rmolecu la r  in terac t ion;  m i is the 
volume concentra t ion of components ;  T is t empe ra tu r e ;  
q is the heat  flux, ~ li is the mean  f ree  path of mo l -  
ecules  of pure gas;  l i is the mean f ree  path of tool-  

ecules of i-th gas in mixture; ~4 is a numerical coef- 
ficient; R is the gas constant; Pi is the gas density; 
Cpi and Cvi are the mean specific heat of gas at con- 
stant pressure and volume. 
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