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The main methods of analysis of heat transfer in mixtures of nonre-
acting gases are discussed, A new model and method of calculating
the thermal conductivity is proposed.

There have been considerable number of theoretical
studies of heat transfer in mixtures of nonreacting
gases. Most of them represent a continuation and de-
velopment of Boltzmann's fundamental work [1]. A
gas or a gas mixture is a discrete medium with local
aggregates of mass in the form of atoms, molecules,
or associations of them, moving randomly in space.
Using the ideas of molecular kinetic theory, Boltz~
mann derived the basic integrodifferential equation of
the gas state, whose solution makes it possible to ex-
press analytically the transport coefficients, includ-
ing the thermal conductivity, as a function of the con-
trolling parameters (atomic or molecular weights and
geometric dimensions of the components, radial dis-
tribution function, distribution of molecular velocities,
form and parameters of intermolecular interaction
potential). The difficulty of solving the equation is
increased by the fact that the geometric parameters of
gas molecules and the nature of their interaction have
not yet been adequately investigated. Strictly speaking,
the integrodifferential equation of the gas state applies
to a uniform gas in conditions close to the equilibrium
state, i.e., when the fluxes are linear in relation to
the potential gradients.

Since the end of last century there have been two
different approaches to the analytical determination of
the thermal conductivity of a gas mixture.

1. Enskog [2] and Chapman [3] independently ob-
tained an approximate analytical solution of the Boltz-
mann equation.

If the gas mixture is represented as a hypothetical
uniform gas with reduced molecular parameters the
solution of the equation of the gas state from [2, 3] can
be used to obtain an expression for the thermal con-
ductivity of a gas mixture as a function of the following
controlling parameters

A=F1(M;0,e, T, m). (1)

We note that the reduced molecular parameters
(mass and diameter of molecules, parameters of in-
termolecular interaction) of a uniform gas are calcu-
lated on the basis of the combination rules, which con~
tain some elements of arbitrariness [4].

In the solution of the Boltzmann equation the mol-
ecules are assumed to be spherically symmetrical,
ideally elastic, and smooth, with a Maxwellian ve-
locity distribution [2, 3].
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The Enskog~Chapman method was developed in
many subsequent studies involving more precise con-
sideration of the effect of the asymmetry of shape and
roughness of the molecules, the introduction of new
kinds of interaction potentials, and a new distribution
function. A thorough critical review of these investi-
gations is given in [4]. The development of transport
theory for multicomponent mixtures is also described
in [4].

2. The second method of investigating the effective
thermal conductivity of gas mixtures owes its origin
to work of Wassiljewa [5]. Let us recall the main idea
of this method. It is assumed that the effective ther-
mal conductivity of a gas mixture is an additive func-
tion of the thermal conductivity of its components.
The thermal conductivity of a component in a mixture
can differ from the thermal conductivity of the pure
gas, since the mean free path of the molecules in the
mixture may be significantly altered. In this method
of investigation the effective thermal conductivity of
a gas mixture is expressed as a function of the fol-
lowing parameters:

A=f, (M, 0;, T, My, my).

(2)

In all the subsequent papers [6—11] in which Was~
siljewa's method was developed, it was still assumed
that there was an additive relationship between the ef-
fective thermal conductivity of a gas mixture and the
thermal conductivity of its components. Since there is
no obvious basis for this assumption, let us examine
the justification given by Wassiljewa [5].

The thermal conductivity of a pure gas is deter-
mined from the formula obtained by Boltzmann [1]:

Cpi
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For extension to a gas mixture Wassiljewa puts
forward the following arguments: "We can imagine
the total number n of molecules of a pure gas divided
into two parts n; and ny; ny + ny = n. Then the thermal
conductivity (?)* can be represented as consisting of
two parts in the form

n %Rp;Cul;

A, = ny  %Rpiculs .
P omtn (v — DM

(4)
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All the quantities here have the same values as in for-
mula (3) and relate to one gas. We leave the tempera~

*The question mark here and later is ours.



ture and the pressure unaltered and imagine n, mol-
ecules of the one gas are replaced by the same number
of molecules of the other gas. Then expression (4) re-
tains (?) the same form, but in the second term of the
right-hand side the subscripts of the components are
changed. If the change in the mean free path of the
molecules in the mixture is taken into account the ex-
pression for the thermal conductivity of a binary gas
mixture takes the form

#R ;s
(v;— 1 M;°

where li and 1! are the new mean free paths of the mol-
ecules of the mixture components."

Wassiljewa determined the values l{ and Z]-' from the
formulas [1]
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Wassiljewa subsequently converted relationship (5)
to the form
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Here m, and m, are the volume concentrations of the
components in the mixture,

my = gy + )™, my =1, (1 + 1),

and the parameter A has the following form:

O\ M; + M;
Aij_K(“i) l/ 2M; ’

where k = 1.38 is an empirical coefficient.
Relationship (7) is known in the literature as Was-
siljewa's formula.
For convenience of further analysis we put expres-
sion (7) in the form

(8)

A= hymy R My, (9)

where A; and A,—the new values of the thermal con-
ductivity of the pure components in the mixture—are
given by the expressions

M

Ao ha
—_ e hp= -
my -y Ay

my + 1y

M (10)
We will show that the above justification of the ad-
ditive nature of relationship (9} is not sound. In fact,
it is easy to show that by using the same arguments
we could justify the following form, for instance, of
the relationship between the effective thermal con-
ductivity and thermal conductivity of the components:

1 my
M

my
Ag

(11)

We note that relationships (4), (5), and (9) assume
a definite structure in the arrangement of the com-
ponents in the gas mixture, viz., components 1 and
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2 form flat layers {Fig. la) oriented parallel to the
heat flux. The nature of formulas (4) and (5) will be
the same for two layers consisting of components 1
and 2 and for an infinite number of infinitely thin lay-
ers.

If components 1 and 2 form alternating flat layers
oriented perpendicular to the heat flux, then we ar-
rive at formula (11).

We emphasize that neither of these cases truly re-
presents the actual arrangement of the components in
the gas mixture. In fact, the molecules are arranged
randomly in the gas mixture. The ascription of a def-
inite structure to the arrangement of the components
must be regarded as a formal approach, which, as the
investigations of Wassiljewa and his successors have
shown, can be of great value for calculation of the
thermal conductivity of a gas mixture. Relationships
(9) and (11) relate to two extreme models of the struc-
ture of a mixture and represent cases of minimum (9)
and maximum (11) thermal resistance. Such models of
a gas mixture are anisotropic and the components of
the mixture in the model are geometrically nonequi-
valent. Any intermediate isotropic model will pre-
sumably be closer to the structure of a real gas mix-
ture. On this basis we can predict straight away that
relationships (9) and (11) can lead to differences be~-
tween calculated data and experimental results. Re-
lationship (9} will lead to overestimated results and
(11) to underestimates.

This probably explains why Wassiljewa had to in-
troduce the empirical correction factor K = 1.38 into
formula (9).

Wassiljewa's basic assumption of an additive rela-
tionship between the effective thermal conductivity of
a gas mixture and the thermal conductivity of its com-~
ponents has been treated very critically by some in-
vestigators.

Enskog thinks that in general the thermal conduc~
tivity of a mixture cannot be expressed by an additive
function of its components {2].

Papers [6~11] give various empirical relationships
for calculation of the numerical coefficients in Was-
siljewa's formula. These relationships use experi-
mental data for the diffusion or viscosity coefficients
of the components forming the mixture. Attempts to
provide a rigorous theoretical basis for the use of
these coefficients have been unsuccessful. The view
that the thermal conductivity of the mixture will have
an intermediate value between the results obtained
from formulas {9) and (11) has been expressed by sev-
eral investigators. For instance, Brokaw [8] proposed
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Fig. 1. Models of structure of gas mixture: a) Wassil-
jewa's model [5]; b) Brokaw's model [8]; ¢) Missenard's
model [12].



that the thermal conductivity of a mixture should be
calculated as the arithmetic mean of the results ob-
tained from formulas (9) and (11)., Missenard [12] pro~-
posed the following model of a gas mixture. Isolated
inclusions of component 2 are scatteredthroughout the
connecting component 1 (Fig. 1c). The relationship
between the effective thermal conductivity of such a
model and the thermal conductivity of the components
and their volume concentration has the form

xzxi{l-emg(l—ifj
A /

[l——mé/e' ('1—- _;l”_l } (12)
T

\

In this model components 1 and 2 are also geomet-
rically nonequivalent, i.e., the subscripts cannot be
interchanged in formula (12). To remove this contra-
diction Missenard suggested calculating two values of
the thermal conductivity of the mixture by interchang-
ing the subscripts of the components in (12) and taking
their arithmetic means.

The calculation methods proposed by Brokaw and
Missenard seem very artificial to us. We think that
the structural model chosen for the gas mixture should
correspond with the main aspect of the distribution of
the components in the gas mixture, viz., the compo-
nents in the mixture do not form alternating layers
(Wassiljewa's and Brokaw's model) do not consist of
closed macroinclusions of one component in the other
{Missenard's model), but form a random system com-
posed of interpenetrating components. The two com-
ponents in this case will be geometrically equivalent,
Let us attempt to construct a structural model of the
gas mixture corresponding to the formulated require-
ments. Imagine the position of the molecules of the
binary gas mixture as fixed at an arbitrary instant
(see Fig. 2a). We now divide the whole volume oc-
cupied by the gas mixture between the individual com-
ponents (see Fig. 2b) in proportion to their volume
concentration. We obtain a random three-dimensional
spatial lattice rather like a sponge with communicating
pores. Each random spatial lattice, as Fig. 2b shows,
contains molecules of only one component, and the
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Fig. 2. For derivation of a model of a gas mixture in the form of inter-

penetrating components: a) schematic representation of binary gas mix-

ture; b) distribution of free volume between components; c¢) schematic

representation of irregular three-dimensional structure; d) ordered model
of three-dimensional structure of mixture [13].
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volumes occupied by the different components are con-
tiguous with one another. Figure 2b also shows that
the cross sections of the microlattice are commen-
surable with the distance between the molecules.

Assume that part of the volume assigned to each
component is filled with a continuous isotropic me-
dium with a thermal conductivity corresponding to the
altered thermal conductivity of the components in the
mixture (see Fig. 2¢). The thermal conductivity of
such a random three-dimensional structure can be
investigated on an ordered model.

In [13] we considered a model structure of a two-
component mixture (see Fig. 2d) corresponding to
the requirements formulated earlier for the model of
a gas mixture. In fact, the model of [13] is an ordered
system of interpenetrating lattices. It is isotropic and
the components in it are geometrically equivalent and
uniformly distributed throughout the volume of the
mixture. The functional relationship for calculation
of the thermal conductivity has the form

A=pi | e rvi—cpy 2CEUZ0) ]
| vC+(1—0)
V= & . (13)

Here C = A/L is a dimensionless quantity character-
izing the relationship between the parameters of the
gpatial lattice of the model (see Fig. 2d). The quantity
C depends only on the volume concentration of the
components and is given by the equation

my =2C*— 3C* + 1, (14)

whose real and positive solution (first root) has the
form

C=O,5+acos%, (15)

and for

0<my 0,6, a=—1 ¢=arccos(l — 2m,);

0,5<Lmy 1,0, a=1 ¢ = arccos (2m, — 1),

and the values of the angle ¢ are real only in the last
quadrant, i.e., 270° < ¢ =< 360°,

The third root of the cubic equation (14} is also a
real positive solution, but is less suitable for calcu-
lations.

For rough calculations we can use the graphic so-
lution of Eq. (14) given in Fig. 3.

We obtain the thermal conductivities A and Ay of
the components of the mixture from relationship (11)

A= Ay (my 4+ mpd) ™', Ag =g (ma + myds) ™t . (16)

To calculate coefficients A}, and Aj; we use the
very simple relationships proposed in [6]:

Ay = Y (L)z My + M,

Yi \ 01 2M,
Ay = (L)’ M+ M,
Yz Gy M,

Sy Sy . S
’Y1=1+~7—,-, Y2=1+T’ Y1z—1+—7',—- (17)

Here S, and S)—the Sutherland constants—characterize
the forces of intermolecular interaction. The value of
8,y for a mixture of nonpolar gases is determined from
the expression [14] Sy, = v8;S,, and for mixtures with
polar components [6] S;, = 0.73 VS;S,. The coefficients
Ajj can also be calculated from other recently obtained,
more accurate relationships [7—11, 15, 16].

Thus, we can propose the following scheme for cal-
culation of the thermal conductivity of a gas mixture.
From (15), (16) we find the thermal conductivity of the
components of the mixture, i.e.,

A= fa(hy, Aoy my, mg, 05, 05,81,Ss, My, My). (18)

The found values of A{, A, and the volume concen-
trations m, and m, are substituted in relationship (13)
and the effective thermal conductivity of the gas mix-
ture

A=Ffo(h, Ao, my, my) (19)

is calculated.

Let us investigate the effect of individual param-
eters on the effective thermal conductivity of the gas
mixture calculated by the proposed method.

A general quantitative analysis of (13) is rather
difficult, since the effective thermal conductivity of
the mixture is a function of ten parameters and, hence,
in this paper we confine ourselves to a few limiting
cases and an investigation of the qualitative effect of
the individual parameters.

1. We consider several limiting cases in formula
(13), which lead to obvious results: a)A; = Ay, then
v=1andA=A;=2Ay;b) whenm, =0, A=2A]=As;0)
when mg = 0, A = Ay = Ay; d) when Al, = Aj, = 1 we ob-
tain Al = Aq, A = Ag.

2. We note that in the region 0.7 < p = 1.6 the re~
lationship A = f{X], Ay, m4, m,) is almost linear.

3. Consideration of the effect of polarity of the
components when y = 1 leads to a reduction of the co-
efficient Ai’j and the appearance of a positive deviation
of the effective thermal conductivity from the addi-
tivity rule.

4. If there is a significant difference in the masses
of the molecules and their diameters we can expect the
appearance of negative deviations of the effective ther-
mal conductivity of a gas mixture from the additivity
rule,
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Fig. 3. Relationship between parameter C
and volume concentration of components.



To test the suitability of the proposed method we
calculated the thermal conductivity of 30 mixtures of
inert, polyatomic, and polar gases in the whole range
of variation of the concentration of the components at
temperatures of 273 to 800° K. The mean difference
between calculation and experiment was 2—-5%. The
maximum difference for mixtures of inert gases (about
10%,) occurred in the case of a He—Kr mixture at T =
793° K in the region of low concentrations of the heavy
component.

For mixtures of polyatomic gases the maximum
deviation (up to 14%) was observed for a Hy-CO, mix-
ture, also in the region of low volume concentration
of CO,. Considerable deviations between experiment
and calculation (up to 10%) for Hy-CO,, Hy-N,, and
H,-C,H, mixtures have been observed by other re-
searchers [8,20] and probably require special con-
sideration.

It is believed that present analytical methods of
calculation of the thermal conductivity of gas mixtures
give results which deviate from the experimental data
by only 2—3% on the average. In view of this an aver-
age discrepancy of 5—8% can be regarded as a fault of
the calculation method.

We regard this viewpoint as strange, since the er-
ror in the experimental determination of the thermal
conductivity of pure components and the differences
between the data of different authors are +(2—5%) [17]
and increase with temperature increase. In addition,
the initial calculation parameters oy, &, and 8; differ
significantly in different papers [4, 16, 18, 19]. At the
same time, calculations show that for a He-Xe mix-
ture a change of 10% in o leads to a change of 25% in
the thermal conductivity of the gas mixture. This in-
dicates the need for a critical attitude to the prevalent
view on the postulated error of various methods of
calculation. The considered questions and a compar-
ison of the results of calculations by the proposed
method with experimental data will be dealt with in a
special paper.

NOTATION

A is the effective thermal conductivity of gas mix-
ture; A; is the thermal conductivity of pure i-th com-~
ponent; o and M; are the diameter and the mass of
molecular components; €; and S; are the constants
characterizing intermolecular interaction; m; is the
volume concentration of components; T is temperature;
q is the heat flux, "K; I; is the mean free path of mol-
ecules of pure gas; l{ is the mean free path of mol-
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ecules of i-th gas in mixture; » is a numerical coef-
ficient; R is the gas constant; p; is the gas density;
Cpi and cy; are the mean specific heat of gas at con-
stant pressure and volume.
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